Экология: миф и реальность

Значение экологии неизмеримо выросло во второй половине двадцатого века, так как произошло фоновое загрязнение природы промышленными выбросами, отходами и продуктами агрохимии. Вследствие неблагоприятного воздействия на окружающую среду в значительной мере уменьшилось видовое разнообразие как флоры, так и фауны. Безвозвратно исчезают хрупкие индивидуумы животных и растений, многие из них занесены в Красную книгу, так как в природе резко уменьшилось их количество.


Распознавание лесных горючих материалов по спектральным признакам и основные принципы создания распознающей системы.

В настоящее время при достаточном уровне развития дистанционных методов исследования, можно достаточно полно изучить пространственную неоднородность ЛГМ. Сейчас изучаются различные физические поля, на основе их анализа можно судить о строении и состоянии ЛГМ. Большой объем информации о растительности может быть получен в инфракрасном, а также в сантиметровом диапазонах. На основе анализа ИК снимка получили пример оценки горизонтальной структуры слоев ЛГМ. Было установлено, что поле влагосодержания ЛГМ может считаться однородным и изотропным, а его структура описывается уравнением нормированной автокорреляционной функцией:

2.5.1.

где , , и - координаты текущей и фиксированной точек на плоскости;

=1,5м - показатель затухания;

=9,2м - период пространственной периодической составляющей поля.

Эта функция позволяет определить наиболее характерные пространственные величины, которые присутствуют в случайном процессе излучения леса. Распознающая система производит серию измерений образа подлежащего классификации и сравнивает эти измерения с набором “типичных образов” в “словаре образов”. Совпадение или наиболее близкое совпадение с элементом словаря дает желающую классификацию.

Естественный Рецептор Классификатор

объект (датчик) (блок принятия Результат

решения)

рис. 2.5.1. Модель системы распознавания ЛГМ по спектральным признакам.

Выход рецептора - набор n

измерений, каждое из которых относится к одному из каналов сканера, которые делаются одновременно. Любой объект в пространстве может быть представлен n - компонентным вектором измерений х, х=[ ], где хi соответствует измерению в i-ом канале сканера. Классификатор относит вектор измерений к одному из множеств предварительно определенных классов. Задача проектирования классификатора образов состоит вначале из разбиения пространства измерений (лесных горючих материалов) на области решения так, чтобы каждый тип ЛГМ относился к данному различному классу, который может отождествлять любой вектор измерений как принадлежащий к классу, соответствующему той области решения, в которую он попадает.

Пусть мы имеем m

классов горючих материалов и определены соответствующие этим классам области решения. Пусть мы можем найти множество функции Х, называемых дискриминантными, которые обозначим , обладающими теми свойствами, что имеет большее значение, чем все стальные дискриминантные функции, всякий раз, когда Х - точка в i-ой области решения. Если мы хотим классифицировать любую точку Хи, то есть определить, к какой области решения она относится, то нам надо вычислить только .

Точка Хи принадлежит к классу имеющему наиболее значение . Правило классификации заключается в следующем:

пусть Wi обозначает i-ый класс; решаем, что , если и только если для всех j=1,2 .m. Действительно две дискриминантные функции могут иметь равные значения только в точках, лежащих на границе раздела областей решения. Для этих случаев определяем правила разрешения неопределенности.

Дискриминантные функции вычисляют на основе информации, выделенной из набора обучающих образов, то есть векторов измерений с известной классификацией, которые считаются типичными представителями интересующих нас классов. обучающая процедура проста и выполняется автоматически, но сходимость к решению гарантирована только тогда, когда обучающиеся образы разделимы линейной границей. Но когда классы образов перекрываются, данный метод не подходит. Поэтому для этих случаев используется статистический подход для распознавания ЛГМ в силу ряда горючих материалов для классификации спектральных измерений с неизвестной идентификацией.

Если число возможных значений данных велико, для записи в память ЭВМ гистограммы может потребоваться очень много места. Число ячеек памяти, необходимых для записи n-мерной гистограммы, в которой каждое измерение может принимать Р значений, равно Рn. Один из способов разрешения этой трудности - предположить, что функция распределения вероятностей может быть адекватно аппроксимирована кривой, имеющей простую функциональную форму, например, нормальной функцией плотности вероятностей. Функция распределения вероятностей для класса i, оцененная по обучающим выборкам имеет вид:

2.5.2.

- оценка дисперсии;

- оценка математического ожидания.

Сделав такое параметрическое предположение о том, что функция вероятности любого класса может быть аппроксимирована нормальной функции плотности, мы должны хранить в ЭВМ вместо всей гистограммы только математическое ожидание и дисперсии каждого класса. Использование матричной записи [ ], позволяет получить очень компактное выражение формул двухмерной или n-мерной функции плотности вероятностей. Для общего случая n-мерных данных:

Тогда многомерная n-мерная функция плотности может быть записана так:

Перейти на страницу: 1 2 3

Интересное по теме

Проблемы защиты окружающей среды Свердловской области
Данная курсовая работа посвящена описанию проблемы защиты окружающей Свердловской области. Актуальность данной темы не вызывает сомнения, поскольку данная проблема затрагивает каждого жителя ежедневно, ежечасно и, даже, ежеминутно. Воздух, ...

Термальное загрязнение
Вода - важнейший минерал на Земле, который нельзя заменить никаким другим веществом. Она составляет большую часть любых организмов, как растительных, так и животных, в частности, у человека на её долю приходится 60-80% массы тел ...